
A short note on stochastic simulations: a glimpse on the
rejection method

R. Monteiro∗

10/2/2018

Generating some random variables using inverse function method

To begin with, I would like to simulate a simple exponential variable. This is quite easy if we use what some
people call the “inverse method”: using the cumulative distribution function, we know that

F (x) =
∫ x

0
λe−λsds = 1eλx. (1)

Furthermore, we know that
X = F−1(U)

is an exponential distribution, we only need to simulate a uniform on the interval [0,1]. Hence, we first
generate an uniform random variable U
U = runif(1,min=0,max=1);

Now we use the inverse function in (1). It is not hard to show that

F−1(u) = − 1
λ
log(1 − u). (2)

which can be simplified to

F−1(u) = − 1
λ
log(u). (3)

if you note that 1-U and U both have uniform distribution in [0, 1]. Ok, now we are ready to generate our
exponential distribution:
generate_exponential <- function(lambda){
U = runif(1,min=0,max=1);

X = -(1/lambda)*log(U);
return (X); }

We are going to generate 1000 exponentially distributed random variables1.
N = 1000;
X <- matrix(0,N,1);
lambda =.5;
for (i in 1:N ){

X[i] = generate_exponential(lambda);
}

∗Mathematics for Advanced Materials - Open Innovation Lab, Japan. Email: rafael.a.monteiro.math@gmail.com,
monteirodasilva-rafael@aist.go.jp

1There is a simpler way to write this function without a loop. One could use for instance runif(1000,min=0,max=1)

1

mailto:rafael.a.monteiro.math@gmail.com
mailto:monteirodasilva-rafael@aist.go.jp


Just for verification, I will plot a histogram with these values. Note how close to the density they are (a good
sign,right?).
hist(X, breaks=25,main="Histogram", prob =TRUE)
curve(dexp(x,rate=lambda), add=TRUE, col = 2, lty = 2, lwd = 2)

Histogram

X

D
en

si
ty

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

A case that is not contemplated by the previous method

Now we shall consider a case that does not fit the previous technique. To begin with, imagine that you want
to simulate a random variable X on the interval [0, 1] that has the following density function:

fX(x) = cx2(1 − x)2. (4)

I’ll first create the function f:
f <- function(x) {

result= 30*x^2*(1-x)^2;
return(result)

}

The constant c is so that
∫ 1

0 f(s)ds = 1. This can be found using integration (or any symbolic package, like
SAGE): in fact, c = 30.

var('x c')
f(x) = c*x^2*(1-x)^2
integral(f,x,0,1)

Good luck if you want to integrate and find a full expression for this inverse. You will probably end yo
in a 3rd order polynomial, whose expression for roots will be nothing but horrible. But there is a way to
circumvent that, which is the main reason for us to introduce the rejection method.

2



The idea is that, if you generate another distribution Y with density function g(·) and so that

f(x)
g(x) ≤ M

(be careful, this is a pointwise bound! In other words, this is a severely tying/constraining both distributions
X and Y!). In our case, g(·) = 1, and it is not hard to show that M = 30

16 (a crude bound would be M = 30,
but smaller values are better (the reason why is that the acceptance rate of the method below behaves as a
geometric distribution with rate 1

M ). Now we do the following:

• Step 1: Generate a random variable with distribution Y;

• Step 2: Generate an Uniform r.v. U;

• Step 3: If U ≤ f(Y )
cg(Y ) then do X =Y, otherwise go back to step 1

Ok, now we are ready to go. Notice that we must simulate until we get a valid result2

M = 30/16;
Y = matrix(0,N,1);
for (i in 1:N){

while (TRUE){
U = runif(2, min=0,max=1);
if (U[2] <f(U[1])/M){

Y[i]= U[1];
break;

}
}

}

Just for curiosity, we can plot the histogram for Y. The fitting is stunning.
hist(Y, breaks=25,main="Histogram", prob =TRUE)
curve(f(x), add=TRUE, col = 2, lty = 2, lwd = 2)

2I will not explain it here, but the distribution of accepted simulated values also follow a probability distribution, called
geometric distribution.

3



Histogram

Y

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

4


	Generating some random variables using inverse function method
	A case that is not contemplated by the previous method

