
Simulated annealing

Rafael Monteiro

Mathematics for Advanced materials - Matham-Oil, Japan

May 19, 2019

Author: R. Monteiro
Affiliation: Mathematics for Advanced materials - Matham-Oil, Japan
I would like to start with an example of a surface plagued with local maxima/minima. The

main references I am going to use are

Robert, Christian, and George Casella. Monte Carlo statistical methods. Springer Sci-
ence & Business Media, 2013.

and the very interesting book

Aarts, Emile, and Jan Korst. "Simulated annealing and Boltzmann machines." (1988).

[5]: import numpy as np

import sympy

from sympy import *
from sympy.plotting import plot3d

import matplotlib.pyplot as plt

x, y = symbols('x y')

f = (cos(16*x)+ cos(3*x))**2*(sin(2*y)+sin(5*y))**2

plot
plot3d(f, (x, -1, 1), (y, -1, 1))

1

[5]: <sympy.plotting.plot.Plot at 0x7f5f35e320b8>

So, if we run gradient descend in this problem we will probably not find the global maximum.
We are going to use a different method, called "simulated annealing". The method still relies on
the gradient of the function f, which we calculate below, symbolically:

[6]: gradient = [sympy.diff(f, x), sympy.diff(f, y)]

We would like to find the maximum value of this function in the region (x, y) ∈ [−1, 1] ×
[−1, 1].

The main point of the algorithm is to go up, but it does it with a certain probability, that
changes through ’time’. In fact,the analogy of the method is not with time, but with temperature:
as the temperature goes down, the probability of the algorithm going up or down changes.

[7]: number_iterations = 500
T = np.linspace(1.0/(number_iterations**2),1.0/

↪→(number_iterations),number_iterations)
T = T[::-1] ### we reverse it, so that, using index as time, we decrease the␣

↪→temperature as time goes by

We shall also need to lambidify these symbolic functions, that is, we need to turn them into
numpy numerical functions:

[8]: f_numpy = lambdify((x,y), f, 'numpy')

And now we can start the implementation
[9]: point= np.array([0,0]).reshape(1,2)

value_at_point = f_numpy(point[0,0],point[0,1])

def simulate(point,sigma):

2

return point +sigma*np.random.randn(1,2)

#cmap = plt.get_cmap('jet_r')
seq_points =point
seq_value = value_at_point
print(value_at_point)
for i in range(number_iterations):

next_point = simulate(point,sigma=0.01)
value_at_next_point = f_numpy(next_point[0,0],next_point[0,1])
Delta = value_at_next_point-value_at_point #np.float(f.evalf(subs={x:

↪→next_point[0,0],y:next_point[0,1]}) - f.evalf(subs={x:point[0,0],y:
↪→point[0,1]}))

if (np.random.uniform()< min(np.exp(Delta/T[i]),1)):
point = next_point
value_at_point = value_at_next_point
seq_points = np.concatenate((seq_points,point),axis=0)
seq_value = np.append(seq_value,value_at_point)

#colors = cmap((1.0*np.linspace(1,number_iterations,number_iterations))/
↪→number_iterations)

#colors = plt.cm.coolwarm(scaled_z)
#colors = np.linspace(0,1,np.shape(seq_points)[0])
#colors = cmap(colors)

plt.figure(figsize=(15,8))
plt.subplot(121)
color = [str(item/8.0) for item in seq_value]
plt.plot(seq_points[:,0],seq_points[:,1])
plt.xlabel('x')
plt.ylabel('y')
plt.grid(True)

plt.subplot(122)

R = seq_points.shape[0]
x = list(range(0,R))

plt.plot(x,seq_value,color='C1')
plt.xlabel('iterations')
plt.ylabel('Value of the function')
plt.grid(True)

plt.show()

3

0.0

It behaves quite nicely, right? The technique is in fact quite useful in order to do global op-
timization. On the other hand, it does not use any information about the local structure of the
function (like its gradient). A common thing that people do then is to combine a simulated an-
nealing with another local search type of method.

Computational remark: We should be careful with the algorithm that I wrote above,
for it can run out of the domain I had defined initially. One can easily avoid this issue
by carefully describing what the "particle" should do when it hits the boundary.

A nice exercise is the following:

Exercise: consider the following function, which we call "the sugarloaf func-
tion" (which is nothing but a representation of the real Sugar Loaf, in Rio -
https://en.wikipedia.org/wiki/Sugarloaf_Mountain - a place where I lived a long
time ago).

[10]: x,y = symbols("x y")
sugarloaf_2D = exp(-4*((x-.25)**2+ y**2)) + .6*exp(-4*((x-1.5)**2+ y**2));
plot3d(sugarloaf_2D, (x, 0, 2), (y, -2, 2),title ='Sugar Loaf function')

4

[10]: <sympy.plotting.plot.Plot at 0x7f5f35d10a90>

Combine local (for instance, Gradient descent) and simulated annealing (a global
method) to find the local maximum of this function on the domain (x, y) ∈ [0, 2] ×
[−2, 2].

[]:

5

