
Weight evolution and mass shuffling in a shallow NN:
a random walk approach

Rafael Monteiro

Mathematics for Advanced materials - Matham-Oil, Japan

September 12, 2019

Introduction
I would like to continue the previous notebook Weight_evolution_in_shallow_NN, where I

briefly motivated the process of optimization in a Neural Network (NN) from the perspective of
mass shuffling or, if you think in terms of particles or has some experience with kinetic theory, of
kinetic equilibration.

Initially I found it a very particular point of view about the problem, to later discover (after
some quick research) that other people have thought about that too. Here however we are not
going to mention gradient flows or anything like that. Instead, we shall go cheap (indeed, veeery
cheap!!), just to get a felling of how to sketch a design of different approaches to train a NN.

Remark: If you are interested in reading other approaches to training, a bit closer to the
gradient flows, you should read https://papers.nips.cc/paper/8101-stein-variational-
gradient-descent-as-moment-matching There is a clear connection between the ideas
here and those in kinetic theory, gradient flow of measures and so, but that is beyond
the scope of this notebook.

As before, first we import some libraries
[1]: import numpy as np

import tensorflow as tf
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from mpl_toolkits import mplot3d
import seaborn as sns
sns.set(style="darkgrid")

In the beginning part of the notebook coincide with the previous one (because we need to
artificially create data). In part 2 things start to change, and most of the discussion starts there.

1 - Prediction boundaries: linear case study
The problem lies in the category of supervised learning: we have a sample of elements of type

(Xi, Yi), for 1 ≤ i ≤ N, all independent and identically distributed, and we would like to train a
predictor.

Let’s start by generating a sample Xi, which will be normally distributed.

1

[2]: N = 1000
X = 10*np.random.randn(2,N)

With regards to the label Y, we are going to use the following classifier:

Y = 1, whenever x1 ≥ 0, Y = 0 otherwise. (1)

[3]: Y = np.array((X[0,:]+2*X[1,:]>=10),np.int32)

If we plot we see this:
[4]: colors =['red','blue']

vec_color = [colors[i] for i in Y[:]]
plt.figure(figsize=(10,8))
plt.scatter(X[0,:100],X[1,:100],color=vec_color[:100])

[4]: <matplotlib.collections.PathCollection at 0x12e22e518>

1.1 - Augmenting the dimension
Let’s make the dimension of this problem a bit higher. The ith element in our sample, which

so far is in R2, has coordinates X[i,:]. Initially, we shall consider this as a set of points lying on an
embedded, 2 dimensional, manifold in a higher dimensional space.

2

[5]: additional_dimension = 13
Additional_dimension_coordinates = np.zeros([additional_dimension,N])

[6]: X = np.concatenate((X,Additional_dimension_coordinates),axis=0)

Just to check the dimensions, X should now have dimension (2 + 13)× N
[7]: X.shape

[7]: (15, 1000)

which is indeed the case.
Now in these "extra dimensions" we would like to add some small noise. The idea is that, as

we collect data, these entries play the role of irrelevant features (but we didn’t know that at the
time of data gathering! How could we?!).

[8]: X[2:,:] = .01*np.random.randn(additional_dimension,N)

For instance, if we plot the first 3 dimensions, we will see that most of the points are clustered
around the plane (x1, x2) defined by the first two coordinates

[9]: fig = plt.figure()
plt.figure(figsize=(10,8))
ax = plt.axes(projection='3d')
ax.scatter3D(X[0,:1000],X[1,:1000],X[2,:1000],color=vec_color[:1000]);
ax.view_init(20, 30)

<Figure size 432x288 with 0 Axes>

3

Note the difference in magnitude of all the x,y axis to the z axis. We can make this difference
visualy more pronounced if we plot everythin with the same scale:

[10]: fig = plt.figure()
plt.figure(figsize=(10,8))
ax = plt.axes(projection='3d')

ax.scatter3D(X[0,:1000],X[1,:1000],X[2,:1000],color=vec_color[:1000]);
ax.set_xlim3d(-30, 30)
ax.set_ylim3d(-30, 30)
ax.set_zlim3d(-30, 30)

ax.view_init(40, 60) # This sets the angle by which we rotate the axis

<Figure size 432x288 with 0 Axes>

4

You can see that the training set is separated (although not that much, because there is no gap).
1.2 - Constructing a training and a test set
We would like to set part of the sample apart so that it can be used for testing the model.

However, we would like to have a stratified sample: both training, test, and CV set should have
more or less the same proportion of Y = 1 and Y = 0

[11]: from sklearn.model_selection import StratifiedShuffleSplit

split_sample= StratifiedShuffleSplit(n_splits=1, test_size=.2)

for train_index, test_index in split_sample.split(np.transpose(X),np.
↪→transpose(Y)):

X_train,Y_train = X[:,train_index],np.reshape(Y[train_index],(1,-1))
X_test,Y_test = X[:,test_index],np.reshape(Y[test_index],(1,-1))

Just a quick remark on the above computation: note that we are us-
ing a strange "transpose" on X and Y to do the "split_sample.split(,).
That’s the case because the arguments for this function are of type
X : array-like, shape (n_samples, n_features) (see https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html)
That’s not a big deal though: as the output is an array of integers, we can use i in the

5

columns. That’s why we don’t use the transpose when we assign X_train, Y_train and
so.

Let’s count the proportion in each group:
[12]: print("Proportion of elements in whole sample is: ",str(np.sum(Y)/len(Y))+"\n")

print("Proportion of elements in train set is: ", str(np.sum(Y_train)/Y_train.
↪→shape[1])+"\n")

print("Proportion of elements in test set is: ", str(np.sum(Y_test)/Y_test.
↪→shape[1]))

Proportion of elements in whole sample is: 0.33

Proportion of elements in train set is: 0.33

Proportion of elements in test set is: 0.33

We are in good shape: we are ready to go and discuss the predictive model and its training.
2 - Training a simple logit regression
We shall make use of import tensorflow_probability as tfp .
The main idea here is trying something different, and that will involve flipping coins, random-

izing the heuristics. In fact, Gradient Descent is just one type of heuristics for weight calibration;
as I mentioned before, there are many other.

[13]: import tensorflow_probability as tfp

In the process of training a log regression I would like to see how the mass gets reshuffled in
the weigh matrix. The model goes like this: denote the sigmoid function by σ(·), which we write
as

σ(z) =
1

1 + exp(z)
, z ∈ R.

In our case we are going to use the following: we are interested in finding a vector W ∈ Rk

and a quantity b ∈ R that will be used in our predictor. To be more precise, we will have

Ŷ =

{
1, i f σ(W · X + b) ≥ η
0, i f σ(W · X + b) < η

.

In fact, we know that W = e1 = (1, 0, 0, . . . , 0) is the predictor that we are looking for. So, as
we train our model we would like to see the entries Wi (weights) in the matrix W to decay to 0 for
i ≥ 2 and converge to a positive number for W1.

It is not hard to do this training using scikit-learn, but this is not what we want: we want to go
old school on this, so we are going to design the method by ourselves.

Remark: in the code you will see no η. That’s because the tensorflow.round automati-
cally sets η = .5. This function was used as a matter of convenience, and it is not hard
to change it to the general case, that includes η as parameter.

The main difference here is that we will only allow the nodes in W(1) to assume three values:
η, 0 , or −η, where η is a positive quantity.

6

With what purpose?
Well... let’s think: η is the intensity of belief of that note on that parameter in order to do a

prediction. One can say that it measures the polarization of the model. In that sense one should
keep in mind the behavior of the quantity (H(·) is a Heaviside function)

σ(ηx + b) =
{

H(x), f or η → +∞
σ(b), f or η → 0

In other words: the model is very reactive in the first case, while very indiferent (apathetic) in
the second.

2.1 - Auxiliary functions
First we design a weigh initializer; afterwards we design a forward propagation.
Note that we will keep k as a variable, for we want to study the effect of dimensionality in the

model. So, to begin with we get a numpy vector with the number of nodes in each layer. This is
going to be the vector "nodes_per_layer". Note that the number of nodes in the ith column will be
given by "nodes_per_layer[i]"

[14]: k = 2 + additional_dimension
nodes_per_layer = np.array([k,1],ndmin=1)

Now we can initialize the weights that will connect the layers. Note that, from the perspective
we want to study here, the "mass" will flow throught "pipes" that have weights given by the
matrices W

One thing to note in the next code is that part of it can be reused in larger NNs (which is
something that we will do later). For instance, in the case of logits one can avoid the use of
dictionaries. We left things a bit longer in a somewhat unecessary fashion, but with the intention
of making th ecode more portable for future applications.

[15]: def weight_initializer(nodes_per_layer,eta):
'''
Initialize the matrix W with dimensions 1xk and the 1x1 parameter b
'''
L = len(nodes_per_layer)
parameters={}

p_w = [1./3,1./3,1./3]
flip_w = tfp.distributions.Categorical(probs=p_w)
p_b = [1./2,1./2]
flip_b = tfp.distributions.Categorical(probs=p_b)
counts_w = np.array([-eta,0,eta],dtype=np.float32)
counts_b = np.array([-1,1],dtype=np.float32)

with tf.Session() as sess:

for i in range(1,L):
aux = np.reshape(counts_w[sess.run(flip_w.

↪→sample(nodes_per_layer[i-1]))],(1,-1))
W = tf.constant(aux,␣

↪→shape=[nodes_per_layer[i],nodes_per_layer[i-1]],dtype=tf.float32)

7

b = tf.constant([0],dtype=tf.float32,shape=␣
↪→[nodes_per_layer[i],1])#tf.get_variable("b",dtype=tf.int32,initializer=tf.
↪→constant([0]))

return (W,b)

Remark: In fact, all of the previous cell could have been implemented easily using
numpy. It is good to know other libraries though.

For instance, if we set eta =5 , we get this output
[16]: eta = 5

tf.reset_default_graph()
parameters = weight_initializer(nodes_per_layer,eta)

with tf.Session() as sess:
tf.global_variables_initializer
print(sess.run(parameters))

(array([[5., 0., 0., 5., -5., 0., 5., 0., 0., 0., 5., -5., -5.,
5., 5.]], dtype=float32), array([[0.]], dtype=float32))

The next thing that we need to do is a propagator. For tris we will receive a tuple with strings,
whose entries describe the activation function in that layer. What we have is the following:

Z[i] = W[i] · A[i− 1] + b[i]

where A[i− 1] denotes the output of the previous layer. Note that the dimensions math: A[i-1]
has dimension ni−1 × 1, while W[i] has dimensions ni × ni−1, hence Z[i] is a vector of dimensions
ni × 1.

Before we write the propagation function, we are going to set the activation function vector:
[17]: type_activation = ['sigmoid']

Let’s implement the function as a single layer model (it can be generalized to deeper NN, but
the implementation gets a bit more technical; we won’t worry about that for now)

[18]: def propagator(W,b,type_activation,X_tensor):
L = len(type_activation)

A = X_tensor
for i in range(L):

if type_activation[i]=='relu':
Z = tf.add(tf.matmul(W,A),tf.cast(b,tf.float32))
if i !=L-1:

Z = tf.nn.relu(Z)
elif type_activation[i]=='sigmoid':

Z = tf.add(tf.matmul(W,A),tf.cast(b,tf.float32))
if i !=L-1:

Z = tf.nn.sigmoid(Z)
return Z

8

It will be useful to use to consider the weight as parameters: the graph will always be the same,
but we shall modify the weights as we go.

For example, we shall use it as follows:
[19]: tf.reset_default_graph()

Create some placeholders
X_tensor = tf.placeholder(name="X_tensor",␣

↪→shape=[nodes_per_layer[0],None],dtype=tf.float32)
W=tf.placeholder(name="W",shape␣

↪→=[nodes_per_layer[1],nodes_per_layer[0]],dtype=tf.float32)
b= tf.placeholder(name="b",shape =[nodes_per_layer[1],1],dtype=tf.float32)

with tf. Session() as sess:
init = tf.global_variables_initializer()
Z_tensor = propagator(W,b,type_activation,X_tensor)
sess.run(init)
W_val,b_val = sess.run(weight_initializer(nodes_per_layer,eta))
print(sess.run(Z_tensor, feed_dict={X_tensor:X_train,W: W_val, b:

↪→b_val})[0,0])

16.93277

Did you note that we don’t get an integer number? That’s because the last
layer was not ’hit’ by an activation function (yet). This is due to the structure of
the cross entropy function as implemented in tensorflow. In this link they say that:
[https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits]

Well... so let’s compute the cost/loss function:
[20]: def cost_function(Z,Y):

cost= tf.reduce_mean(tf.nn.
↪→sigmoid_cross_entropy_with_logits(logits=Z,labels=Y))

return cost

Which will give, for example, something like this
[21]: tf.reset_default_graph()

X_tensor = tf.placeholder(name="X_tensor",␣
↪→shape=[nodes_per_layer[0],None],dtype=tf.float32)

Y_tensor = tf.placeholder(name="Y_tensor",␣
↪→shape=[nodes_per_layer[1],None],dtype=tf.float32)

W=tf.placeholder(name="W",shape␣
↪→=[nodes_per_layer[1],nodes_per_layer[0]],dtype=tf.float32)

b= tf.placeholder(name="b",shape =[nodes_per_layer[1],1],dtype=tf.float32)

with tf.Session() as sess:
init = tf.global_variables_initializer()

9

Z_tensor = propagator(W,b,type_activation,X_tensor)

sess.run(init)
W_val,b_val = sess.run(weight_initializer(nodes_per_layer,eta))

print(sess.run(cost_function(Z_tensor,Y_tensor),\
feed_dict={X_tensor:X_train,W: W_val, b:b_val, Y_tensor:

↪→Y_train})
)

WARNING: Logging before flag parsing goes to stderr.
W0912 12:22:49.095024 140735522845568 deprecation.py:323] From
/miniconda3/lib/python3.7/site-packages/tensorflow/python/ops/nn_impl.py:180:
add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is
deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where

3.5357707

Great! So we are ready to discuss the training heuristics.
Cost minimization heuristics
At this point we have another concern: how are we going to minimize the cost function? Our

strategy will be the following: b will be as follow:

b← b± 1

with probability 1
2

W will have a different rule: we will flip k coins (ok, ok: three-sided coins, but let’s allow some
abstraction here, please) and change the weight. However we will have an acceptance rule:

Acceptance rate: observe random variables W̃ and b̃ as described above. If

Cost(W̃, b̃) < Cost(W, b),

do W ← W̃, b← b̃; otherwise W and b remain the same.

Remark: in fact, we will test different combinations of W̃, b̃, W, and b. Take a look at
the function "full_model"

This is definitely not the best model, but it is a decent one: we are exploring the parameter
space, and we don’t seem to be biased by any particular direction. This part should be in high
constrast to the previous, continuous case: What makes the problem a bit more complicated here
is that W lives in a state space of size 3k, while b is discrete. Even though this is (intuitively)
smaller than (W, b) ∈ Rk ×R, our heuristics in the latter case is way better than in the discrete
case; this is also the case in the fields of continuous optimization and discrete optimization.

Question: again, why are you doing this? There are many reasons. First, Gra-
dient descent is not the only way to optimize a model. Currently,there is lot of

10

research/discussion about other training methods (Steing Gradient descent, for in-
stance), and a lot of connection between these type of models to studies in kinetic
theory and "asymptotic equilibration". Second reason: because it is easy to press a but-
ton and use any scikit-learn model without having any mathematical ability (I had met
AI people like that a few times in my career).

[22]: def next_step(W_old,b_old,p_w,p_b,eta, type_activation):
'''
p_w are the acceptance probability of W and b
'''
flip_w = tfp.distributions.Categorical(probs=p_w)
flip_b = tfp.distributions.Categorical(probs=p_b)
counts_w = np.array([-eta,0,eta],dtype=np.float32)
init = tf.global_variables_initializer()

Generate new radnom variable
with tf.Session() as sess:

W_new = W_old +np.reshape(counts_w[sess.run(flip_w.
↪→sample(nodes_per_layer[0]))],(1,-1))

b_new= b_old +2*(2*sess.run(flip_b.sample(1)) -1)

parameters_new = W_new,b_new

return parameters_new

[23]: tf.reset_default_graph()
p_w = [1./3,1./3,1./3]
p_b = [1./2,1./2]

flip the three sided coin
flip_b = tfp.distributions.Categorical(probs=p_b)

Set up placeholders
X_tensor= tf.placeholder(dtype=tf.float32,shape=[k,None])
Y_tensor= tf.placeholder(dtype=tf.float32,shape=[1,None])

with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
W_old, b_old = sess.run(weight_initializer(nodes_per_layer,eta))
print(next_step(W_old,b_old,p_w,p_b,eta,type_activation))

(array([[5., -5., 0., 0., 0., -5., 5., 0., 10., 5., -5.,
0., -10., -5., 5.]], dtype=float32), array([[-2.]]))

Let’s test:

11

[24]: tf.reset_default_graph()

X_tensor= tf.placeholder(dtype=tf.float32,shape=[k,None])
Y_tensor= tf.placeholder(dtype=tf.float32,shape=[1,None])

W=tf.placeholder(name="W",shape␣
↪→=[nodes_per_layer[1],nodes_per_layer[0]],dtype=tf.float32)

b= tf.placeholder(name="b",shape =[nodes_per_layer[1],1],dtype=tf.float32)

Now we define the weights
parameters = weight_initializer(nodes_per_layer,eta)

Z = propagator(W,b,type_activation,X_tensor)
cost = cost_function(Z,Y_tensor)
with tf.Session() as sess:

init = tf.global_variables_initializer()
W_old, b_old = sess.run(weight_initializer(nodes_per_layer,eta))
print(sess.run(cost_function(Z,Y_tensor),feed_dict={X_tensor:

↪→X_train,Y_tensor:Y_train,W:W_old,b:b_old}))

51.959717

Now we run the model. Let’s first set some parameters for the search:
[25]: optimization_parameters={

'epochs':200,
'printing':True

}

ntwk_settings={
'number_nodes':nodes_per_layer,
'activation_type':type_activation

}

And now we draw the model and run the data through it
[26]: def␣

↪→full_model(optimization_parameters,eta,ntwk_settings,X_train,Y_train,X_test,Y_test):
↪→

Unpacking
nodes_per_layer = ntwk_settings['number_nodes'] ## Recall, this is a␣

↪→dimension k x 1 matrix
type_activation = ntwk_settings['activation_type']
#learning_rate = optimization_parameters['learning_rate']
epochs = optimization_parameters['epochs']
printing = optimization_parameters['printing']

12

tf.reset_default_graph()
first we create placeholders: they are the ones that will get the data
k = nodes_per_layer[0]
W = tf.placeholder(name="W",shape␣

↪→=[nodes_per_layer[1],nodes_per_layer[0]],dtype=tf.float32)
b= tf.placeholder(name="b",shape =[nodes_per_layer[1],1],dtype=tf.float32)
X_tensor= tf.placeholder(dtype=tf.float32,shape=[k,None])
Y_tensor= tf.placeholder(dtype=tf.float32,shape=[1,None])

Now we define the weights

#weight_initializer(nodes_per_layer,eta)
Z_tensor = propagator(W,b,type_activation,X_tensor)

And we finally compute the cost. This is the function that will be␣
↪→minimized

cost= cost_function(Z_tensor,Y_tensor)
'''
Ok, so the above part only set up the graph over which we will compute␣

↪→things. You can see the graph as a
pipeline, that tells you where things are put in, combined, and where we get␣

↪→outputs
(that is, where we open the "faucet")
'''
Below, we start running data throw these pipes! Let's do it.
#For bookkeeping purposes, let's define two auxiliary quantities
total_cost = [] #array that will save the cost values
W_movie = [] #array that will save the weights for a movie
b_movie = [] #array that will save the weights for a movie

initialize= tf.global_variables_initializer()

with tf.Session() as sess:
Initialize the nodes
sess.run(initialize)
W_old,b_old = sess.run(weight_initializer(nodes_per_layer,eta))
cost_now = sess.run(cost_function(Z_tensor,Y_tensor),feed_dict={X_tensor:

↪→X_train,Y_tensor:Y_train,W:W_old,b:b_old})

for i in range(epochs):
#print(i)
W_new, b_new = next_step(W_old,b_old,p_w,p_b,eta,type_activation)
Given these two weights, we are going to try different␣

↪→combinations:
Case 1
cost_new_1 = sess.run(

13

cost_function(Z_tensor,Y_tensor),feed_dict={X_tensor:
↪→X_train,Y_tensor:Y_train,W:W_new,b:b_old}

)
Case 2
cost_new_2 = sess.run(

cost_function(Z_tensor,Y_tensor),feed_dict={X_tensor:
↪→X_train,Y_tensor:Y_train,W:W_new,b:b_new}

)
Case 3
cost_new_3 = sess.run(

cost_function(Z_tensor,Y_tensor),feed_dict={X_tensor:
↪→X_train,Y_tensor:Y_train,W:W_old,b:b_new}

)

weights = {"0":(W_new,b_old),"1": (W_new,b_new),"2" :(W_old,b_new)}
costs = [cost_new_1, cost_new_2, cost_new_3]
for k in range(3):

if costs[k]<cost_now:
W_old, b_old = weights[str(k)]
cost_now = costs[k]
#print(cost_now)

if i%20 ==0 and printing:
print("\n Cost at "+str(i)+"th iterate: "+str(cost_now))

if i%2 == 0:
total_cost.append(cost_now)
W_movie.append(W_old)
b_movie.append(b_old)

Now we stack the matrices with respect to last coordinate in order to␣
↪→create a video with them later on

W_movie_all = np.stack(W_movie,2)
b_movie_all = np.stack(b_movie,2)
if printing:

plt.figure(figsize=(15,7))
plt.plot(total_cost)
plt.xlabel('Number of iterations',size=22)
plt.ylabel('Cost',size=22)
plt.title('Cost decay per iteration')
plt.grid(True)
plt.show()

At this point we get the value of the optimized parameter and use it␣
↪→to make a prediction

Prediction
predicted_classification = tf.round(tf.sigmoid(Z_tensor))

14

accuracy_of_prediction= tf.reduce_mean(tf.cast(tf.
↪→equal(predicted_classification,Y_tensor),"float"))

Now we do some statistics:
accuracy_train = sess.run(accuracy_of_prediction,feed_dict={X_tensor:

↪→X_train,Y_tensor:Y_train,W:W_old,b:b_old})
if printing: print("Accuracy of training:", accuracy_train)
accuracy_test = sess.run(accuracy_of_prediction,feed_dict={X_tensor:

↪→X_test,Y_tensor:Y_test,W:W_old,b:b_old})
if printing: print("Accuracy of test/validation:", accuracy_test)

return (total_cost, accuracy_train,accuracy_test, W_movie_all, b_movie_all)

[27]: eta=1
global Movie_W
,,_,Movie_W,Movie_b=␣

↪→full_model(optimization_parameters,eta,ntwk_settings,X_train,Y_train,X_test,Y_test)

Cost at 0th iterate: 3.6904266

Cost at 20th iterate: 0.029939272

Cost at 40th iterate: 0.029939272

Cost at 60th iterate: 0.029939272

Cost at 80th iterate: 0.029799558

Cost at 100th iterate: 0.029678259

Cost at 120th iterate: 0.029678259

Cost at 140th iterate: 0.029671526

Cost at 160th iterate: 0.029544907

Cost at 180th iterate: 0.029544907

15

Accuracy of training: 1.0
Accuracy of test/validation: 1.0

Wow! Great! This simple heuristics could give a very good prediction model! Let’s take a look
at it more carefully.

2.2 - Visualizing mass shuffle and dynamic behavior of weights
Let’s create a video with the weights in order to see how they evolve through time, that is,

iterations:
[28]: import time

from IPython import display
import matplotlib.pyplot as plt
import matplotlib.animation as animation

Initialize the animation plot
fig = plt.gcf()

def updatefig(i):
im = plt.imshow(Movie_W[:,:,i],cmap=plt.

↪→get_cmap('hot'),interpolation='nearest',vmin=-1,vmax=1)
return im,

frames = np.shape(Movie_W)[-1]
ani = animation.FuncAnimation(fig, updatefig, interval=200,␣

↪→frames=frames,blit=True)

ani.save('NN_shallow_random.mp4')

16

[29]: import io
import base64
from IPython.display import HTML

video = io.open('NN_shallow_random.mp4', 'r+b').read()
encoded = base64.b64encode(video)
HTML(data='''<center><video alt="test" controls>

<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video></center>'''.format(encoded.decode('ascii')))

[29]: <IPython.core.display.HTML object>

Remark: recall that we are visualizing what is happening in the first layer.

AS we did in the previous notebook, let’s plot it
[30]: plt.figure(figsize=(15,8))

for i in range(k):
plt.plot(Movie_W[0,i,:],label="W^{(1)}["+str(i)+"]")

plt.legend(loc=2)
plt.xlabel('Iteration',size=22)
plt.ylabel('Weight value',size=22)
plt.show()

17

Whaaaat?!! Why are the weights not getting separated??!! Yes, they are, but in AVERAGE!
[31]: plt.figure(figsize=(15,5))

cop_Movie = np.copy(Movie_W)
v_0 = np.copy(Movie_W[0,0,:])
v_1 = np.copy(Movie_W[0,1,:])
cop_Movie[0,0,:]=0*Movie_W[0,0,:]
cop_Movie[0,1,:]=0*Movie_W[0,1,:]

plt.plot(v_0,label="$W^{(1)}$["+str(0)+"]")
plt.plot(v_1,label="$W^{(1)}$["+str(1)+"]")
plt.plot(np.squeeze(np.mean(cop_Movie,1)),label="average of rest")
plt.xlabel('Iteration',size=22)
plt.ylabel('Weight value',size=22)
plt.legend(loc=2)
plt.show()

18

The "best way" to avoid any issue with weights W[i] for i ≥ 2 is "shutting them off": curiously,
the average doesn’t seem to be converging to zero.

You can certainly do the same for larger NN, but the shallowest model is the best to see the
effect of mass shuffling on the weights: as the video goes you start seeing less mass on the weights
W(i) for i ≥ 2. It is also possible to wonder what are the possible ways to shuffle mass in a NN,
because backpropagation is one of them (indeed, a very effecient one!). We could also think of
other methods, but let’s not worry about that for these notes: I will investigate that a bit further in
future notebooks.

Remark (on backpropagation): An interesting point in using backpropagation meth-
ods is that they give an idea about "which way to go" for each weight. That’s the magic
of differentiation and gradient methods: they provide a very nice heuristics to search
for better weights. This should be put in contrast to the current method we are playing
with: even though state space is "smaller", heuristics for discrite models are in general
quite primitive.

[32]: Movie_averaged= np.zeros([1,3,Movie_W.shape[-1]])
Movie_averaged[0,0,:] = Movie_W[0,0,:]
Movie_averaged[0,1,:] = Movie_W[0,1,:]
Movie_averaged[0,2,:] = np.mean(Movie_W[0,2:,:],0)

[33]: global Movie_averaged

fig = plt.gcf()

def updatefig(i):
im = plt.imshow(Movie_averaged[:,:,i],cmap=plt.

↪→get_cmap('hot'),interpolation='nearest',vmin=-1,vmax=1)
return im,

frames = np.shape(Movie_averaged)[-1]
ani = animation.FuncAnimation(fig, updatefig, interval=200,␣

↪→frames=frames,blit=True)
ani.save('NN_shallow_averaged_random.mp4')

19

[34]: video = io.open('NN_shallow_averaged_random.mp4', 'r+b').read()
encoded = base64.b64encode(video)
HTML(data='''
<center><video alt="test" controls>

<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video> </center>'''.format(encoded.decode('ascii')))

[34]: <IPython.core.display.HTML object>

With regards to b, it doesn’t take to long for it to find the right value:
[35]: plt.figure(figsize=(15,5))

plt.plot(Movie_b[0,0,:])
plt.xlabel('Iteration',size=22)
plt.ylabel('b',size=22)
plt.show()

You should run the code a few times (because it has a random element in it). Sometimes you
see surprising things, like b "overshooting" (that is, getting lower than -10), going back, and "climb
down" again to -10, the correct shift in the prediction boundary.

3- Prediction boundaries: non-linear case study

20

The boundary between classes in the previous model was linear, thus one could exepect a good
performance of even a shallow NN (a logit model is the simplest possible NN you can imagine).
But let’s see what happens if we change the boundary a bit. By doing so we also bring in the
second coordinate, making it "slightly" more relevant for the prediction, but not that much: on
average, the model still "separates well" with a simple linear boundary.

[44]: N = 800
X = 10*np.random.randn(2,N)
Y = np.array((X[0,:]+ 2*X[1,:]>=1*np.sin(X[1,:]) +5),np.int32)

additional_dimension =13
Additional_dimension_coordinates = np.zeros([additional_dimension,N])
X = np.concatenate((X,Additional_dimension_coordinates),axis=0)
X[2:,:] = .1*np.random.randn(additional_dimension,N)

split_sample= StratifiedShuffleSplit(n_splits=1, test_size=.2)

for train_index, test_index in split_sample.split(np.transpose(X),np.
↪→transpose(Y)):

X_train,Y_train = X[:,train_index],np.reshape(Y[train_index],(1,-1))
X_test,Y_test = X[:,test_index],np.reshape(Y[test_index],(1,-1))

[45]: fig = plt.figure()
plt.figure(figsize=(10,8))
ax = plt.axes(projection='3d')
colors =['red','blue']
vec_color = [colors[i] for i in Y[:]]

ax.scatter3D(X[0,:1000],X[1,:1000],X[2,:1000],color=vec_color[:1000]);
ax.set_xlim3d(-30, 30)
ax.set_ylim3d(-30, 30)
ax.set_zlim3d(-30, 30)

ax.view_init(40, 60) # This sets the angle by which we rotate the axis

<Figure size 432x288 with 0 Axes>

21

[46]: optimization_parameters={
'epochs':400,
'printing':True

}

k = 2 + additional_dimension
nodes_per_layer = np.array([k,1],ndmin=1)

type_activation = ['sigmoid']
ntwk_settings={

'number_nodes':nodes_per_layer,
'activation_type':type_activation

}

[47]: eta = 5
,,_,Movie_W,Movie_b=␣

↪→full_model(optimization_parameters,eta,ntwk_settings,X_train,Y_train,X_test,Y_test)

Cost at 0th iterate: 36.935165

22

Cost at 20th iterate: 0.048725158

Cost at 40th iterate: 0.047548015

Cost at 60th iterate: 0.047548015

Cost at 80th iterate: 0.047548015

Cost at 100th iterate: 0.040229224

Cost at 120th iterate: 0.03624066

Cost at 140th iterate: 0.03624066

Cost at 160th iterate: 0.034872226

Cost at 180th iterate: 0.034872226

Cost at 200th iterate: 0.034872226

Cost at 220th iterate: 0.034328334

Cost at 240th iterate: 0.032354303

Cost at 260th iterate: 0.032354303

Cost at 280th iterate: 0.032354303

Cost at 300th iterate: 0.032354303

Cost at 320th iterate: 0.032354303

Cost at 340th iterate: 0.032354303

Cost at 360th iterate: 0.032354303

Cost at 380th iterate: 0.030880686

23

Accuracy of training: 0.9890625
Accuracy of test/validation: 0.99375

It is clear that the accuracy of the model has decayed, in both the training and in the test set.
Nevertheless, the accuracy is really high!

As before, let’s plot the dynamic behavior of the weights
[48]: plt.figure(figsize=(15,5))

cop_Movie = np.copy(Movie_W)
v_0 = np.copy(Movie_W[0,0,:])
v_1 = np.copy(Movie_W[0,1,:])
cop_Movie[0,0,:]=0*Movie_W[0,0,:]
cop_Movie[0,1,:]=0*Movie_W[0,1,:]

plt.plot(v_0,label="W^{(1)}["+str(0)+"]")
plt.plot(v_1,label="W^{(1)}["+str(1)+"]")
plt.plot(np.squeeze(np.mean(cop_Movie,1)),label="average of rest")
plt.xlabel('Iteration',size=22)
plt.ylabel('Weight value',size=22)
plt.legend(loc=2)
plt.show()

24

How about b?
[49]: plt.figure(figsize=(15,5))

plt.plot(Movie_b[0,0,:])
plt.xlabel('Iteration',size=22)
plt.ylabel('b',size=22)
plt.show()

Notice that we are not at all using any information about the local structure of the model. This
is a "silly" model in the sense that the mass shuffle uses no information about the model to do the
shuffling.

[50]: # Initialize the animation plot
fig = plt.gcf()

def updatefig(i):
im = plt.imshow(Movie_W[:,:,i],cmap=plt.

↪→get_cmap('hot'),interpolation='nearest',vmin=-1,vmax=1)
return im,

frames = np.shape(Movie_W)[-1]

25

ani = animation.FuncAnimation(fig, updatefig, interval=200,␣
↪→frames=frames,blit=True)

ani.save('NN_shallow_random_blnr_bdr.mp4')

[51]: video = io.open('NN_shallow_random_blnr_bdr.mp4', 'r+b').read()
encoded = base64.b64encode(video)
HTML(data='''<center><video alt="test" controls>

<source src="data:video/mp4;base64,{0}" type="video/mp4" />
</video></center>'''.format(encoded.decode('ascii')))

[51]: <IPython.core.display.HTML object>

And that’s it for now.

26

